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Abstract—This work aims to find discriminative EEG-based 

features and appropriate classification methods that can 

categorise brainwave patterns based on their level of activity or 

frequency for mental state recognition useful for human-machine 

interaction. By using the Muse headband with four EEG sensors 

(TP9, AF7, AF8, TP10), we categorised three possible states such 

as relaxing, neutral and concentrating based on a few states of 

mind defined by cognitive behavioural studies. We have created a 

dataset with five individuals and sessions lasting one minute for 

each class of mental state in order to train and test different 

methods.  Given the proposed set of features extracted from the 

EEG headband five signals (alpha, beta, theta, delta, gamma), we 

have tested a combination of different features selection 

algorithms and classifier models to compare their performance in 

terms of recognition accuracy and number of features needed. 

Different tests such as 10-fold cross validation were performed. 

Results show that only 44 features from a set of over 2100 

features are necessary when used with classical classifiers such as 

Bayesian Networks, Support Vector Machines and Random 

Forests, attaining an overall accuracy over 87%.  

Keywords — EEG, brain-machine interface, machine learning, 

mental states classification 

I. INTRODUCTION 

The ability to autonomously detect mental states, whether 

cognitive or affective, is useful for multiple purposes in many 

domains such as robotics, health care, education, neuroscience, 

etc. The importance of efficient human-machine interaction 

mechanisms increases with the number of real life scenarios 

where smart devices, including autonomous robots, can be 

applied. One of the many alternatives that can be used to 

interact with machines is through superficial brain activity 

signals. These signals, called electroencephalograms or EEG 

for short, convey information regarding the voltage measured 

by electrodes (dry or wet) placed around the scalp of an 

individual. In addition to regular non-invasive 

electroencephalography there can also be found invasive 

alternatives which can monitor brain activity placing the 

electrodes directly inside the skull of the subject [35]. This 

technique is known as intracranial electroencephalography 

(iEEG). Despite iEEG can yield better signal acquisition, it is 

invasive and therefore more complex to apply. Extracranial 

electroencephalography techniques include wearable and non-

wearable technologies. The fact that extracranial devices used 

to acquire EEG signals are non-invasive, are becoming easier 

to wear, and their price is decreasing widens the range of 

applications for which they are suitable.  

A major challenge in brain-machine interface applications is 

inferring how momentary mental states are mapped into a 

particular pattern of brain activity. One of the main issues of 

classifying EEG signals is the amount of data needed to 

properly describe the different states, since the signals are 

complex, non-linear, non-stationary, and random in nature. 

The signals are considered stationary only within short 

intervals, that is why the best practice is to apply short-time 

windowing technique in order to detect local discriminative 

features to meet this requirement. The paper at hand focuses 

on selecting a subset of highly discriminative features and 

comparing to state-of-the-art classification methods that can 

categorise EEG signals into different mental states, taking into 

consideration the performance in terms of accuracy and 

computational cost. The application considered herein is to 

distinguish among three different mental states (e.g. relaxed, 

neutral and highly concentrated) of an individual using an 

EEG device with dry electrodes that can interface a range of 

applications, such as to control the movement of a robot. 

The remainder of the paper proceeds as follows. Related works 

are summarised in section II. The experimental setup, 

including information regarding the device used, and details 

about the data acquisition are described in section III. The 

methods tested to perform feature selection and the criteria 

used to compare the different classifiers are presented in 

section IV. Preliminary results are presented in section V. A 

discussion on the conclusions drawn from the experimental 

results is provided in section VI. 

II. RELATED WORK 

Statistical features derived from EEG data are commonly used 

alongside machine learning techniques to classify mental 

states [18], [19]. These nominal states can then be used for 



finite points of control as a Brain-Computer Interface. A Muse 

headband has been recognised by neuroscientists for its 

effectiveness and relatively low cost as well as its accuracy 

when classified with Bayesian methods [8]. Through signals, 

two tasks were recognised with 95% accuracy, though it is 

worth noting that tasks were classified rather than mental 

states, and said tasks were in binary distinction to one another. 

Using a Muse headband, researchers accurately measured a 

user’s enjoyment [11], [12] of an activity from brain signals 

alone using the stimuli of two videogames, one measurably 

more enjoyable than the other. With the use of a high 

resolution 32-channel EEG and statistical feature extraction, a 

model was developed to control a robot’s movement [9].  

Using statistics focused on the signals produced by the motor 

cortex which is thought to control muscles for movement [10], 

researchers classified various states which successfully 

resulted in a model that could direct a robot’s movement. EEG 

data has been used extensively to detect abnormal brain 

activity related to ill-health such as stroke [13] specifically 

when ischemia is present in the brain, brain activity points to 

abnormalities prior to the stroke occurring. As well as stroke 

detection, neuroscientists found that upper extremities in 

motor function post-stroke could be rehabilitated using EEG 

data with robotics feedback [14] in the form of a brain-

machine interface. Results were promising in terms of the 

effectiveness of the system’s ability to rehabilitate. Also 

studied extensively is the ability to use EEG data to detect 

seizures both in adults suffering with epilepsy [15] and notably 

in new-born infants [16]. A Spiking Neural Network was 

developed to classify seizure detection based on statistics 

extracted from EEG streams with a high accuracy of 92.5% 

[17]. Random Forest classification of extracted EEG features 

was used to identify mental states during stages of sleep with a 

high accuracy of 82% [20], a Bayesian classifier was trained 

on more general awake, sleep and REM sleep states with 

accuracies ranging between 92-97% in both humans and rats 

[21]. Neural Networks have been observed to have an 

accuracy of 64% when classifying emotional states based on 

EEG data [7].  

Differently from the aforementioned works, this work focuses 

on a study on features selection and classification models 

given a set of proposed features such as statistical, entropy-

based, derivatives and time-frequency features from short 

temporal lapses of EEG data to then generate multiple data 

sets of the same data points with original contribution in their 

differing selections of attributes, which in turn are selected by 

various machine learning models. The primary goal is to find a 

suitable model that can categorise mental states based on EEG 

data from the TP9, AF7, AF8 and TP10 electrodes. 

III. EXPERIMENTAL SETUP AND DATASET 

A. EEG Data Acquisition 

The sensor Muse Headband was used for data collection. The 

Muse is a commercial EEG sensing device with five dry-

application sensors, one used as a reference point (NZ) and 

four (TP9, AF7, AF8, TP10) to record brain wave activity.  

 

Fig. 1. The International 10-20 EEG Electrode Placement Standard [4] 

Highlighted in yellow are the sensors of the Muse Headband. The NZ 

placement (green) is used as a reference point for calibration. 

 

 

Fig. 2. Example of a live EEG stream of the four Muse sensors, Right AUX 

did not have a device and was discarded due to it simply being noise. 
This live feed graph has a Y-Axis of measured microvolts at t=0 on each 

sensor, and an X-axis detailing the time reading. 

To prevent the interference of electromyographic signals, 

nonverbal tasks that required little to no movement were set. 

Blinking, though providing interference to the AF7 and AF8 

sensors, was neither encouraged nor discouraged to retain a 

natural state. This was due to the dynamicity of blink rate 

being linked to tasks requiring differing levels of 

concentration [1], and as such the classification algorithms 

would take these patterns of signal spikes into account. In 

addition, subjects were asked not to close their eyes during any 

of the tasks. Three stimuli were devised to cover the three 

mental states available from the Muse Headband - relaxed, 

neutral, and concentrating. The relaxed task had the subjects 

listening to low-tempo music and sound effects designed to aid 

in meditation whilst being instructed on relaxing their muscles 

and resting. For a neutral mental, a similar test was carried out, 



but with no stimulus at all, this test was carried out prior to 

any others to prevent lasting effects of a relaxed or 

concentrative mental state. Finally, for concentration, the 

subjects were instructed to follow the “shell game” in which a 

ball was hidden under one of three cups, which were then 

switched, the task was to try and follow which cup hid the 

ball. Future work arises in the implementation of a standard 

experiment for each state, for proper comparison to similar 

experiment. After a short amount of time into the stimulus 

starting, as to not gather data with an inaccurate class, the EEG 

data from the Muse Headband was automatically recorded for 

sixty seconds. The data was observed to be streaming at a 

variable frequency within the range of 150 - 270 Hz. 

BlueMuse [5] was used for interfacing the device to a 

computer, and Muselsl [6] was used to convert the Muse 

signals to MicroVolts and record the data into a preliminary 

dataset ready for feature extraction. Fig 2. shows a live stream 

of EEG data, blinking can be seen in the troughs of TP9 and 

TP10 (forehead sensors). At each point in the data stream (150 

- 270 Hz), all signals were recorded along with a UNIX 

timestamp which was further used for down sampling the data 

to produce a uniform stream frequency. The measured 

voltages on the graph can be mapped to the EEG placements 

seen in Fig 1. Before the features extraction we have down 

sampled the data. The sampling rate was decimated to 200 Hz 

based on fast Fourier transformations along a given axis. The 

resampled signal starts at the same value as x, but it is sampled 

with a spacing of len(x) / num * (spacing of x). Because a 

Fourier method is used, the signal is assumed to be periodic. 

This is a realistic down-sampling as the dominant energy is 

concentrated in the range of 20 - 500Hz, even though the 

frequency range of the EEG sensor is superior. 

IV. METHODS 

A. Proposed Set of Features for EEG signals 

Feature extraction and classification of EEG signals are core 

issues in brain computer interface (BCI) applications. One 

challenging problem when it comes to EEG feature extraction 

is the complexity of the signal, since it is non-linear, non-

stationary, and random in nature. The signals are considered 

stationary only within short intervals, that is why the best 

practice is to apply short-time windowing technique to meet 

this requirement. However, it is still considered an assumption 

that holds during a normal brain condition. Non-stationary 

signals can be observed during the change in alertness and 

wakefulness, during eye blinking, and also during transitions 

of mental states. Thus, this subsection describes the set of 

features considered in this work to adequately discriminate 

different classes of mental states. These features rely on 

statistical techniques, time-frequency based on fast Fourier 

transform (FFT), Shannon entropy, max-min features in 

temporal sequences, log-covariance and others. All features 

proposed to classify the mental states are computed in terms of 

the temporal distribution of the signal in a given time window. 

This slide window is defined as a period of 1 second at 250 

Hz, i.e. all features are computed within this time instant. An 

overlap of 0.5 second is used when moving the window, i.e. 

the temporal window 1 (w1) starts at 0 sec. and finishes at 1 

sec.; w2 starts at 1.5 sec. and finishes at 2.5 sec.; w3 starts at 2 

sec. and finishes at 3 sec.; w4 starts at 2.5 sec. and finishes at 

3.5 sec., and so on. Another important point to compute the 

features is the signals from the EEG Muse headband. Since it 

returns five types of signal frequencies {𝛼, β, 𝜃, 𝛿, 𝛾}, then we 

compute all proposed set of features for each signal. Thus, the 

total number of feature values extracted from these signals is 

2147 values. 
 

Statistical Features: In order to have a compact representation 

of the raw sensor data in a given time range, we are using a set 

of classical statistical features since they are useful with 

proven efficiency to complement set of multiples features in 

order to recognise patterns in time series. The statistical 

features are: (i) given a set of data values {x1, x2, ...xN} 

acquired in each temporal window, the mean value                

𝜇 =
1

𝑁
∑ 𝑥𝑖 

𝑁
𝑖 of that sequence is computed; (ii) the standard 

deviation 𝜎 = √
1

𝑁
∑ (𝑥𝑖 − 𝜇)2𝑁

𝑖 ; (iii) statistical moments of 3rd 

and 4th order, which gives us the skewness to measure the 

asymmetry of the data, and also the kurtosis to measure the 

peakedness of the probability distribution of the data, 

respectively. The statistical moments employed are computed 

as follows: 

𝑦 =
𝜇𝑘

𝜎𝑘,                                         (1) 

 

𝜇𝑘 =
1

𝑁
∑ (𝑥𝑖 − 𝜇)𝑘𝑁

𝑖  ,                            (2) 
 

where 𝜇𝑘is the k = {3rd, 4th} moment about the mean and         

y = {skewness, k = 3; kurtosis, k = 4}. Another type of 

statistical features computed was the autocorrelation of the 

signals at each time window for each of the five signals from 

the EEG. The correlation of the signal with a delayed copy of 

itself as a function of delay was employed similarly to [22] 

and [23], where the implementation details and parameters are 

described. 

Max, Min and Derivatives: Given a time window of 1 sec., the 

maximum and minimum values are computed to increase the 

diversity of the features types. Derivatives are also computed 

as temporal features. For each time window, we split the time 

window by 2, such w/2 = 0.5 sec. and w = 1 sec., resulting in 

two sequences of data at ~125 Hz, then we compute: 

𝑢𝑣 =
 𝜇𝑤−𝜇𝑤/2

2
,                                    (3) 

where w and w/2 indicates the first and second half of the 

sequence of data in a time window of 1 sec. The same strategy 

is employed to get the derivative given the max and min 

features in sub time windows: 

𝑚𝑎𝑥𝑡 =
 𝑚𝑎𝑥𝑤−𝑚𝑎𝑥𝑤/2

2
,                                    (4) 

 

𝑚𝑖𝑛𝑡 =
 𝑚𝑖𝑛𝑤−𝑚𝑖𝑛𝑤/2

2
.                                    (5) 

The next temporal features are extracted after splitting the 

initial time window of one second into 4 batches of 0.25 sec. 

each. Then we computed the mean, max and min values of 



each batch, {µ1, µ2, µ3, µ4}, {max1, max2, max3, max4} and 

{min1, min2, min3, min4}. Then we compute the 1D Euclidean 

distance among all mean values, 𝛿𝝻12 = | µ1- µ2|, 𝛿𝝻13 = | µ1- µ3|, 

𝛿𝝻14 = | µ1- µ4|,         𝛿𝝻23 = |µ2 - µ3|, 𝛿𝝻24 = |µ2 - µ4|, 𝛿𝝻34 = |µ3 - 

µ4|, the same for the minimum and maximum values, so that in 

the end we got 18 features based on distances. Using the four 

mean values, and the four max and four min values, and 

adding the previous 18, we got 30 features for each signal in 

the short time window, so that counting the 5 signals we have 

150 temporal features per second. 

Log-covariance features: Given the previous 150 temporal 

features, we then discard the last 6 features in order to attain 

144 features, so that we could build a 12 × 12 square matrix 

to compute the log-covariance as follows: 

𝑙𝑐𝑀 = 𝑈(𝑙𝑜𝑔𝑚(𝑐𝑜𝑣(𝑀))),                       (6) 

where lcM is a resulting vector containing the upper triangular 

elements (78 features) of the matrix after computing the matrix 

logarithm over the covariance matrix M; U(.) is a function to 

return the upper triangular elements; logm(.) is the matrix 

logarithm function;   and    the  covariance  matrix  is given  by   

 𝑐𝑜𝑣(𝑀) = 𝑐𝑜𝑣𝑖𝑗  = 1/𝑁 ∑ (𝑥𝑖𝑘  −  𝜇𝑖  )(𝑥𝑘𝑗 − 𝜇𝑗).𝑁
𝑘  The rationale 

behind of log-covariance is the mapping of the convex cone of 

a covariance matrix to the vector space by using the matrix 

logarithm so that it does not lie in Euclidean space, i.e., the 

covariance matrix space is not closed under multiplication 

with negative scalars. 

Shannon entropy and log-energy entropy: non-linear analysis 

such as Shannon entropy has proven its efficiency in signal 

processing and time series since randomness of non-linear data 

is well embodied by calculating entropies over the time series. 

Entropy is an uncertainty measure and in brain-machine 

interface applications, it is used to measure the level of chaos 

of the system, since it is a non-linear measure quantifying the 

degree of complexity of the data. In information theory, the 

Shannon entropy is given by: 

ℎ = − ∑ 𝑆𝑗 × 𝑙𝑜𝑔(𝑆𝑗)𝑗 ,                             (7) 

where h is a feature computed in every time window of 1 sec. 

and Sj is each element (normalized) of this temporal window. 

Then, given the same time window, we split into two to 

compute the log-energy entropy as follows: 

𝑙𝑜𝑔𝑒 = ∑ 𝑙𝑜𝑔(𝑆𝑖
2)𝑖 + ∑ 𝑙𝑜𝑔(𝑆𝑗

2)𝑗 ,                   (8) 

where i represents an index for the elements of the first sub 

window (0 - 0.5 sec.) and j represents an index for the second 

sub window (0.5 - 1 sec.). 

Frequency domain: The FFT is an advantageous method to 

analyse the spectrum of a given time-series. At every time 

window we compute it as follows: 

𝑋𝑘 = ∑ 𝑆𝑛
𝑡  𝑒−𝑖2𝜋𝑘

𝑛

𝑁
 𝑁−1

𝑛=0 ,  k = 0, ... , N - 1.                 (9) 
 

Accumulative features as energy model: An accumulative 

value was obtained frame-by-frame given a time window, for 

each individual feature, duplicating the number of features. 

We compute the difference between the values of the current 

frame to the previous frame and accumulate it over time as 

follows: 

𝑦𝑖𝑐𝑢𝑚
𝑡 = {

𝑦𝑖
𝑡 ,   𝑡 = 1.                            

∑ (𝑦𝑖
𝑧  − 𝑦𝑖

𝑧−1)2𝑡
𝑧=2 ,   𝑡 > 1

 ,             (10) 

where 𝑦𝑖𝑐𝑢𝑚
𝑡  is the resulting energy model for the current time 

instant given a specific type of feature 𝑦𝑖
𝑘 , i = {1, ... , N} at a 

time instant z representing a specific frame within a time 

window. 

B. Feature Selection Algorithms 

Feature selection aims to remove data which has no useful 

application and only serves to unneededly increase the demand 

for resources. Five datasets were generated using different 

algorithms. Each retained the same data points, but which had 

a reduced number of attributes selected by the algorithm. The 

evaluators used were as follows: 

1. OneR: calculates error rate of each prediction based on 

one rule and selects the lowest risk classification [24]. 

2. Information Gain: assigns a worth to each individual 

attribute by measuring the information gain with 

respect to the class (difference of entropy) [25]. 

3. Correlation: measures the correlation of the attribute 

and class via their Pearson's coefficient which is used 

to rank attributes’ worth comparable to all others. [26]. 

4. Symmetrical Uncertainty: measures the uncertainty of 

an attribute with respect to the class and bases selection 

on lower uncertainties [27]. 

5. Evolutionary Algorithm: creates a population of 

attribute subsets and ranks their effectiveness with a 

fitness function to measure their predictive ability of 

the class. At each generation, solutions are bred to 

create offspring, and weakest solutions are killed off in 

a tournament of fitness [34]. 

C. Machine Learning Algorithms  

As a benchmark, a ZeroR classifier was first run on each 

dataset. This simplistic classifier chooses one single class to 

apply to all of the data to reduce inaccurate classifications, it is 

expected that an accuracy of one third is achieved with a fair 

distribution of the three mental states. Two models were 

trained on Bayes Theorem, a formula of conditional 

probability based on hypothesis H and evidence E. The 

theorem states that the probability of the hypothesis being true 

before evidence P(H) is related to the probability of the 

hypothesis after reading the evidence P(H | E) and is given as 

follows [29]: 

𝑃(𝐻 | 𝐸)  =  
𝑃(𝐸 | 𝐻) 𝑃(𝐻) 

∑ 𝑃(𝐸|𝐻)𝑃(𝐻)𝑗

.                          (11) 

Naivety arises due to the unverified assumption of non-

consideration of the relationships between the absence of 

attributes. A Bayesian Network (Bayes Net) model was also 

trained. This method generates a probabilistic graphical model 

via representing probabilities of variables to classes on a 

Directed Acyclic Graph (DAG) [28] as follows: 

𝑃(𝐶𝑡−1:𝑡−𝑇 | 𝑋𝑡:𝑡−𝑇)  =  
1

𝛽
∏ 𝑃(𝑋𝑘|𝐶𝑘)𝑃(𝐶𝑘)𝑇−𝑡

𝑘=𝑡 .      (12) 



TABLE I.  TABLE TO SHOW ACCURACY OF TRAINED MODELS  

Dataset Model Accuracy % (2dp) 

Naive Bayes Bayes Net J48 Random Tree Random Forest MLP SVM 

OneR 56.21 73.67 80 76.21 87.16 74.27 61.18 

Information 

Gain 
54.2 71.64 76.85 65.02 78.02 72.22 64.1 

Correlation 56.3 72.69 77.05 75.85 84.17 80.82 75.24 

Symmetrical 

Uncertainty 
51.49 71.41 76.29 74.35 82.96 72.25 60.1 

Evolutionary 

Algorithm 
55.04 70.31 80.65 72.62 85.29 80.85 67.65 

TABLE II.  NUMBER OF ATTRIBUTES SELECTED BY FIVE 

EVALUATORS OF THE ORIGINAL 2147 STATISTICAL ATTRIBUTES 

Attribute Selection 

Evaluator 
Ranker Search Cut-

off 
No. of attributes 

selected 

OneR 60.0 44 

Information Gain 0.5 31 

Correlation 0.3 26 

Symmetrical 

Uncertainty 

0.25 36 

Evolutionary 

Algorithm 

N/A 99 

 

The goal is to infer the current time value of Ct given the 

data Xt:t-T = {Xt, Xt-1,...,Xt-T} and the prior knowledge of the 

class, which is attained by the a-posteriori probability                    

P(Ct |Ct-1:t-T, Xt:t-T). The superscript notation denotes the set 

of values over a time interval. 

Three decision trees were developed. Generated by the C4.5 

algorithm [2], a J48 tree splits each decision based on 

information gain, due to the measure of entropy in a leaf 

node.  

A Random Tree is generated through a stochastic process 

that will consider a random number of attributes at each 

node. A Random Forest is the process of generating multiple 

Random Trees [3]. A Multilayer Perceptron (MLP) model 

was generated, a feedforward Neural Network in that cycles 

are not formed by neurons. An MLP was implemented due 

to its ability to classify data points that are not linearly 

separable in Euclidean space [30]. A model was also trained 

using a Support Vector Machine (SVM), which classifies 

labelled data through a process of supervised learning, 

where examples are mapped out in space and classification 

is performed by the closest area in which the unknown class 

data falls [31]. In particular, an improved version of Platt’s 

Sequential Minimal Optimization (SMO) was used to train 

the SVM [32], [33]. 

V. PRELIMINARY RESULTS 

The five generated sets from the original dataset are shown 

in Table I. Five different algorithms were chosen, and their 

results ranked by their individual scores. Arbitrary cut off 

points were implemented where the scores closed in on 

either 0 or the lowest score present if there were no zero 

values. The values given are incomparable between 

algorithms due to their unique methods of giving score. The 

MLP was given 2000 epochs to train with the number of 

nodes on layers set to the default “a” setting, dynamically 

calculated by n = (attributes + classes)/2                                                                              

for each dataset it was trained on. A Zero Rules classifier 

was run as a benchmark, and with close to equally 

distributed data, set a model accuracy of 33.36% on all 

datasets for comparison. We can observe from when 

compared to all other classifiers which are not naive. The 

most effective model was a Random Forest classifier along 

with the dataset created by the OneR Attribute Selector, 

which had a high accuracy of 87.16% when classifying the 

data into one of the three mental states. Preliminary results 

for each of the datasets and their trained models are 

presented in Table II. For each test, 10-fold cross validation 

was used to train the model. All random seeds were set to 

their default value of 1. Table II that all of the models far 

outperformed the benchmarks set by the Zero Rules 

classifier, the lowest being 51.49% (Symmetrical 

Uncertainty dataset with a Naive Bayes classifier). It is 

reasonable to assume that the naivety in not considering 

attribute relationships has led to poorer results. 

VI. CONCLUSION  

This paper presented a study on mental state classification 

based on EEG signals, it proposed a set of features using a 

short-term windowing extracted from five signals from an 



EEG sensor to categorise three different states: neutral, 

relaxed and concentrated. A dataset was created using data 

from five individuals in sessions lasting one minute for each 

state. The primary goal of this work was to find appropriate 

set of features by testing multiple feature selection 

algorithms and classification models that provide acceptable 

accuracy performance on the dataset that can be useful for 

human-machine interaction. From the multiple feature sets 

and models produced, the most accurate is a Random Forest 

classifier on an attribute selected by the OneR ruleset, with a 

prediction accuracy of 87.16%. Future work will be focused 

on comparing our best results with deep learning strategies 

and implementing a real-time application to: (i) control 

devices, such as robots; and (ii) detect positive and negative 

moods useful for applications in mental health care. 
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